ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
George Danko
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 358-371
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34897
Articles are hosted by Taylor and Francis Online.
Thermal loading studies are presented for short vertical emplacement, application of cooling enhancement, and drift ventilation. Two 25-m-long heat pipes upward oriented at 45 deg are installed at each emplacement borehole to promote heat transport into the pillar area. In addition, ventilation of the emplacement drifts is assumed for a 2- to 20-yr period. It is concluded that the maximum borehole temperature can be reduced from 230 to 136°C using only the heat pipes, and to 110°C applying the heat pipes together with moderate air cooling. The ventilation alone without heat pipes can reduce the temperature to only ∼200°C. It is also demonstrated that the heat transferred from the container area to farther distances into the pillar raises rock temperatures significantly, by 10 to 20°C, and the increase in temperature remains noticeable for at least 1000yr. In addition, because of the more efficient heat distribution caused by the heat pipes, it is shown that more waste can be stored at lower temperature in the same repository area. Based on these results, it is expected that as a result of using heat pipes, lower temperatures will be achieved in the container area together with improved drying and permanent as well as temporary water removal in the pillar area.