ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
George Danko
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 358-371
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34897
Articles are hosted by Taylor and Francis Online.
Thermal loading studies are presented for short vertical emplacement, application of cooling enhancement, and drift ventilation. Two 25-m-long heat pipes upward oriented at 45 deg are installed at each emplacement borehole to promote heat transport into the pillar area. In addition, ventilation of the emplacement drifts is assumed for a 2- to 20-yr period. It is concluded that the maximum borehole temperature can be reduced from 230 to 136°C using only the heat pipes, and to 110°C applying the heat pipes together with moderate air cooling. The ventilation alone without heat pipes can reduce the temperature to only ∼200°C. It is also demonstrated that the heat transferred from the container area to farther distances into the pillar raises rock temperatures significantly, by 10 to 20°C, and the increase in temperature remains noticeable for at least 1000yr. In addition, because of the more efficient heat distribution caused by the heat pipes, it is shown that more waste can be stored at lower temperature in the same repository area. Based on these results, it is expected that as a result of using heat pipes, lower temperatures will be achieved in the container area together with improved drying and permanent as well as temporary water removal in the pillar area.