ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
James A. Ritter, John R. Zamecnik, Chia-Lin W. Hsu
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 330-342
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34894
Articles are hosted by Taylor and Francis Online.
The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Technology Center, is a one-fifth scale pilot facility used in support of the startup and operation of the U.S. Department of Energy’s DWPF. Seven IDMS runs examined the effect of noble metals in simulated high-level radioactive waste (HLW) and important process variables on the generation of H2 during the preparation of melter feed with formic acid. The results showed that due to the noble metals in actual HLW, the lower flammable limit of H2 in air (4 vol%) could be exceeded in D WPF vessels, depending on such factors as off gas generation and air inleakage. A small but detectable quantity of H2 was generated even in the absence of noble metals. The results also verified that the most important process variable that affected the H2 generation rate was the amount of formic acid added to the system. Forced air purge systems with H2 monitoring instruments were installed in the DWPF to control the concentration of H2 in the offgas by fuel dilution during melter feed preparation. The design-basis forced air purge flow rate required in the DWPF during radioactive operations was based on the peak H2 generation rate observed during an IDMS run operated with 25% excess formic acid. This amount of excess formic acid was deemed a credible deviation from nominal operating conditions; therefore, a margin of safety was included in the design basis.