ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kenneth M. Wasywich, William H. Hocking, David W. Shoesmith, Peter Taylor
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 309-329
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34893
Articles are hosted by Taylor and Francis Online.
In the Canadian research and development program on fuel storage, used CANDU (Canada deuterium uranium) UO2fuel bundles are being exposed in experimental vessels to both dry and moisture-saturated air environments at 150°C. At intervals of several years, individual fuel elements, which were deliberately defected before storage, are recovered for destructive examination to determine the extent of UO2 oxidation that has occurred. The most recent examinations took place after 99.5 and 69 months of storage under dry and moist conditions, respectively. The progress of oxidation in the two different storage environments is compared, and the results of fuel examination by optical microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD) are described. In dry air, oxidation proceeds mainly on exposed UO2 surfaces near the cladding defect and penetrates the fuel along grain boundaries adjoining cracks and the fuel-sheath gap, which provide primary pathways for access of oxygen to the fuel. An oxidized rind, resembling α-U3O7, is visible around UO2 grain cores near the oxide front. In moist air, oxidation is more generally distributed throughout the length of the fuel element. It proceeds along grain boundaries and is most extensive in regions of the fuel expected to have the highest porosity or grain-boundary inventory of fission products. This oxidized layer is too thin to observe by optical microscopy or identify by XRD, but XPS results indicate a higher degree of oxidation at the exposed grain boundaries (U6+/U4+ often »1.0) than in fuel specimens oxidized in dry air (U6+/U4+ usually <1.0). Interpretation of the results is complicated by the different O2/UO2 ratios in the two types of storage vessel and the fact that oxygen was completely consumed during at least some of the storage intervals. Nonetheless, it is clear that the presence of moisture promotes a more generally distributed oxidation of UO2 grain boundaries. The probable involvement of radiolytic processes in the moist oxidation reaction and possible reasons for the sensitization of certain regions of the fuel to moist oxidation are discussed. In addition to oxidation of UO2, the XPS spectra provide evidence for the radiation-induced incorporation of oxygen and nitrogen into adventitious carbon (adsorbed hydrocarbons) on the UO2 surfaces.