ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Xiangdong Feng, John K. Bates, Edgar C. Buck, Charles R. Bradley, Meiling Gong
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 193-206
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34883
Articles are hosted by Taylor and Francis Online.
The behavior of radioactive sludge-based and simulated nuclear waste glasses has been compared by long-term testing of radioactive and simulated compositions of Savannah River Laboratory 165, 131, and 200 glasses. Static tests at glass surface area-to-solution volume (SA/V) ratios of 340 and 2000 m-1 up to 720 days show little difference in reactivity between radioactive and simulated waste glasses. The same leach trends are observed for both glass types. The differences in reactivity at an SA/V of 2000 m-1 or below are not large enough to alter the order of glass durability for the different compositions nor to change the controlling glass dissolution processes. The small differences in reactivity between fully radioactive and simulated glasses can reasonably be explained if the controlling reaction process and leachate pH values are accounted for. However, at an SA/V of 20000 m-1, the simulated nuclear waste glass, 200S, leaches faster than the corresponding radioactive glass by a factor of 40 within 1 yr. The accelerated reaction with the simulated glass 200S is associated with the formation of crystalline phases such as clinoptilolite (or K-feldspar), and a pH excursion. The radiation field generated by the fully radioactive glass reduces the solution pH, which, in turn, may retard the onset of the increased reaction rate. This result suggests that the fully radioactive nuclear waste glass 200R may be substantially more durable than the simulated 200S glass if the lower pH in the 200R leachate can be sustained. Meaningful comparison tests between radioactive and simulated nuclear waste glasses should include long-term and high SA/V tests.