ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Peter Taylor, Robert J. Lemire, Donald D. Wood
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 164-170
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34880
Articles are hosted by Taylor and Francis Online.
Phase relationships among solids in the UO2-O2-H2O system at 25, 100, and 200°C and pressures to 2 MPa have been calculated from critically evaluated thermodynamic data. Stability limits of the solids are expressed in terms of oxygen and water partial pressures at each temperature. The results are then discussed in terms of known UO2 oxidation reactions and uranium mineralogy. Particular attention is paid to “UO3 hydrates, ’’some of which are shown to be stable phases in air at very low relative humidities (down to ∼0.1% at 25°C). This is relevant to fuel storage because of the very high molar volumes of these phases, relative to UO2, and consequent potential for damage to defected fuel assemblies. Comparison of the calculated phase relationships with observed UO2 oxidation behavior helps to identify those phase interconversions that are kinetically constrained.