ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Shawn P. Burns, Dale E. Klein
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 157-163
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34879
Articles are hosted by Taylor and Francis Online.
The TEXSAN thermal-hydraulic analysis program was developed to simulate buoyancy-driven fluid flow and heat transfer in spent-fuel and high-level nuclear waste (HLW) shipping applications. The TEXSAN design has sufficient flexibility to conduct full cask analysis as well as small-scale heat and mass transfer simulations on a rod-to-rod basis within an individual fuel assembly. As part of the TEXSAN software quality assurance program, the software has been subjected to a series of test cases intended to validate its capabilities. The validation tests include many physical phenomena that arise in spent-fuel and HLW shipping applications. Some of the principal results of the TEXSAN validation tests are described, and they are compared with solutions available in the open literature. The TEXSAN validation effort has shown that the TEXSAN program is stable and consistent under a range of operating conditions and provides accuracy comparable with other heat transfer programs and evaluation techniques. The modeling capabilities and the interactive user interface employed by the TEXSAN program should make it a useful tool in HLW transportation analysis.