ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Shih-Jen Wang, Min-Song Lin
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 147-153
Technical Note | Reactor Operation | doi.org/10.13182/NT93-A34876
Articles are hosted by Taylor and Francis Online.
Because of the discrepancies between design parameters and actual plant data, controller tuning is required during the power testing of a new plant. Furthermore, after a certain period of operation, the effects of aging on the sensors and components cause the system performance to change. With the recent improvements in control system hardware, a better control algorithm can be implemented to ensure the safety of the system. Control system tuning and modification are necessary to keep the system at peak performance. The Taiwan Research Reactor (TRR) is a heavy water-type research reactor. During power operation, a large overshoot in neutron power was observed during a change in thermal power demand. Hence, the dynamic performance of the TRR power regulating system was degraded. From the control system point of view, it is worthwhile to determine the cause of the degraded control system and to tune the corresponding controller setting to achieve better performance. In this paper, the performance of the TRR power regulating system is simulated, the course of the large over-shoot in neutron power is identified, and the control system performance is modified. The main cause of the large overshoot in neutron power is the discrepancy in the delay time of the transfer function between neutron power and thermal power through the identification process. The control system is then modified, based on the actual transfer function. Computer simulation and the simplex search method are applied to obtain the new controller settings. In addition, the discrepancy in the delay time of the transfer function provides valuable information for plant maintenance. Although the TRR was closed in 1988, the experience gained will be useful in control system modification for commercial nuclear power plants in the future.