ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Attila Rácz
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 128-146
Technical Paper | Reactor Control | doi.org/10.13182/NT93-A34875
Articles are hosted by Taylor and Francis Online.
During the last two decades, Kalman filter-based process monitoring techniques have been rediscovered and widely applied in different areas of control and signal validation. When the physical model of the underlying system is known, the Kalman filter is sensitive enough to indicate small, unexpected changes either in the plant or in the measurement models. Although the innovation process that is generated by Kalman filters contains all the necessary statistical information for detecting certain malfunctions, performance degradation, or off-normal operation conditions, skillful hypothesis testing methods are needed for proper interpretation of the innovation’s behavior. The classical binary sequential probability ratio test (SPRT’), developed by Wald, is an optimal tool to judge between two concurring hypotheses. For more than two alternatives, the multiple-hypothesis testing method, the so-called M-ary SPRT, is recommended. In many cases, the situation cannot be represented as simply as a binary problem, however, and the M-ary scheme would be an overcomplication. For an illustration, consider leakage detection when the exact amount of the loss is not of interest. In such a case, the problem can be treated by a properly chosen binary test, and Wald’s classical SPRT framework can be applied. Thus, any binary SPRT and computer code can be used without any modification.