ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Attila Rácz
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 128-146
Technical Paper | Reactor Control | doi.org/10.13182/NT93-A34875
Articles are hosted by Taylor and Francis Online.
During the last two decades, Kalman filter-based process monitoring techniques have been rediscovered and widely applied in different areas of control and signal validation. When the physical model of the underlying system is known, the Kalman filter is sensitive enough to indicate small, unexpected changes either in the plant or in the measurement models. Although the innovation process that is generated by Kalman filters contains all the necessary statistical information for detecting certain malfunctions, performance degradation, or off-normal operation conditions, skillful hypothesis testing methods are needed for proper interpretation of the innovation’s behavior. The classical binary sequential probability ratio test (SPRT’), developed by Wald, is an optimal tool to judge between two concurring hypotheses. For more than two alternatives, the multiple-hypothesis testing method, the so-called M-ary SPRT, is recommended. In many cases, the situation cannot be represented as simply as a binary problem, however, and the M-ary scheme would be an overcomplication. For an illustration, consider leakage detection when the exact amount of the loss is not of interest. In such a case, the problem can be treated by a properly chosen binary test, and Wald’s classical SPRT framework can be applied. Thus, any binary SPRT and computer code can be used without any modification.