ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Bobby E. Leonard
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 89-105
Technical Paper | Radiation Protection | doi.org/10.13182/NT93-A34872
Articles are hosted by Taylor and Francis Online.
The use of induced time-dependent 222Rn behavior to determine source rate magnitudes, ventilation rates (air change rates), and other parameters that affect 222Rn and progeny levels and exposure to building occupants is investigated. When the subject space is purged and the buildup (seepage) back into the space is measured, theoretical, normalized equations show a unique, one-to-one correspondence of the 222Rn and particulate progeny temporal levels to the air change rate in the space. The Bateman equations have been solved in closed form for 222Rn and progeny in air and trapped on a filter under these conditions. A total of 28 measurements of the time-dependent behavior of radon progeny for two test facilities [one with a constant air change rate and one with a constant National Institute of Standards and Technology (NIST)-calibrated source] and four residential dwellings were made. The results were compared with theory and with air change rate measurements made by anemometer flow rates and by the conventional method (SF6 decay). For a factor of 2 range in air change rates in the NIST constant source case, the agreement with the SF6 method air change rate was within ±10.6% standard deviation and agreement with the NIST source magnitude of 37.0 ± 1 kBq was within ±4.9% standard deviation. Agreement to within ±17.7% standard deviation was obtained on determination of air change rates for the residential dwellings. Based on the airborne concentrations and air change rates, source emanation rate magnitudes were obtained. Analyses of the results are presented in detail, and factors affecting the accuracy and feasibility of the method are identified.