ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yassin A. Hassan, Laxminarayan L. Raja
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 76-88
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT93-A34871
Articles are hosted by Taylor and Francis Online.
A computational investigation of experiments involving the condensation phenomenon in the presence of noncondensable gases was performed. TheRELAP5/MOD3 thermal-hydraulic code was utilized for this analysis. Two separate-effects experiments were studied, which are relevant to actual situations encountered in the industry. The first experiment involved condensation of steam in an inverted U-tube when nitrogen is present. A constant flow of steam was injected into the U-tube and condensed along its surface. The condensing length was a function of the injected nitrogen rate and the secondary temperature. The code predicted an active condensation zone with unimpeded heat transfer and a passive zone with no heat transfer. The lengths of these zones agree with the experimental data. The gas temperatures in the U-tube were favorably predicted except for a discrepancy where the calculated primary temperatures were lower than the secondary temperatures for several cases. Active nitrogen contents in the tube were underpredicted by the code. The second experiment investigated was the Massachusetts Institute of Technology’s steam condensation experiment. This experiment modeled the proposed containment cooling system for advanced reactors. Steam was generated in a vessel in which air was present. The steam in the steam-air mixture condensed on the surface of a cooled copper cylinder. Computational predictions of this experiment revealed that heat transfer coefficients vary with air fraction. Calculated heat transfer coefficients were compared with the data, and it was found that the results were better for higher system pressures than for lower pressures.