ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yassin A. Hassan, Laxminarayan L. Raja
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 76-88
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT93-A34871
Articles are hosted by Taylor and Francis Online.
A computational investigation of experiments involving the condensation phenomenon in the presence of noncondensable gases was performed. TheRELAP5/MOD3 thermal-hydraulic code was utilized for this analysis. Two separate-effects experiments were studied, which are relevant to actual situations encountered in the industry. The first experiment involved condensation of steam in an inverted U-tube when nitrogen is present. A constant flow of steam was injected into the U-tube and condensed along its surface. The condensing length was a function of the injected nitrogen rate and the secondary temperature. The code predicted an active condensation zone with unimpeded heat transfer and a passive zone with no heat transfer. The lengths of these zones agree with the experimental data. The gas temperatures in the U-tube were favorably predicted except for a discrepancy where the calculated primary temperatures were lower than the secondary temperatures for several cases. Active nitrogen contents in the tube were underpredicted by the code. The second experiment investigated was the Massachusetts Institute of Technology’s steam condensation experiment. This experiment modeled the proposed containment cooling system for advanced reactors. Steam was generated in a vessel in which air was present. The steam in the steam-air mixture condensed on the surface of a cooled copper cylinder. Computational predictions of this experiment revealed that heat transfer coefficients vary with air fraction. Calculated heat transfer coefficients were compared with the data, and it was found that the results were better for higher system pressures than for lower pressures.