ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Edward T. Dugan, Mohammed K. Alfakhar
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 417-425
Technical Note | Fission Reactor | doi.org/10.13182/NT93-A34862
Articles are hosted by Taylor and Francis Online.
Examination of externally moderated gas core reactor (GCR) neutronic calculations indicates that, in general, neutron diffusion theory is invalid and a higher order approximation to the transport equation needs to be employed. The Sn approximation yields accurate results but can require relatively long CPU computation times. A one-dimensional hybrid Sn-diffusion theory model is developed that employs the Sn approximation in the gas core region and for the first several mean free paths into the reflector region until the angular flux converges to its characteristic distribution in the reflector; diffusion theory is then used in the remaining portion of the reflector. A critical aspect of the hybrid scheme is to ensure proper interfacing between the Sn transport theory and diffusion theory approximations at the mathematical interface where the Sn-to-diffusion theory transition occurs. It is found that the point of transition from Sn theory to diffusion theory can be located closer to the core-reflector interface as the gas density in the core is reduced. Calculations performed on spherical GCR configurations for fuel gas densities ranging from 1018 to 1020 atom/cm3 and with both uniform and nonuniform fuel gas density distributions in the core show that the hybrid model gives accurate keff values and flux distributions as compared with results from the standard Sn approximation. For four energy groups and reflector thicknesses of 0.5 to 1.0 m, the hybrid model is roughly five times faster than a standard Sn calculation. For multigroup calculations on GCRs with thick (1 to 2 m) external moderator reflectors, the hybrid model is found to be about an order of magnitude faster than a standard Sn calculation.