ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Marzano sworn in as NRC commissioner
Matthew Marzano became the newest member of the Nuclear Regulatory Commission when he was officially sworn into office by chair Christopher Hanson this week.
The nuclear engineer and former reactor operator was confirmed last month in a 50–45 vote in the U.S. Senate. Last July, President Biden nominated Marzano to serve on the commission, which is tasked with formulating policies, developing regulations, issuing orders, and resolving legal matters.
Marzano’s term expires June 30, 2028.
Wei-Hsiao Ho, Kuan-Chywan Tu, Bau-Shei Pei, Chin-Jang Chang
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 332-345
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT93-A34856
Articles are hosted by Taylor and Francis Online.
The critical heat flux (CHF) is the maximum heat flux just before a boiling crisis; its importance as a measurement of nuclear reactor power capability design as well as in the safety analysis of reactors has been recognized. With emphasis on CHF behavior under subcooled and low-quality (i.e., <0.25) convective flow at low pressure (i.e., <4.9 MPa) and low mass flux (i.e., <1000 kg/m2·s), an improved model that uses the sublayer dryout theory has been developed. Based on experimental observations of CHF, the model assumes that CHF under such conditions is of the departure from nucleate boiling type. Based on the postulation that CHF is triggered by Helmholtz instability in the sublayer stem-liquid system, the model was developed by a simple energy balance of liquid sublayer evaporation as the vapor blanket tends to disturb the balance between the buoyance force and the drag force exerted upon it. The model is compared with the well-known Biasi et al. correlation as well as the Atomic Energy of Canada Limited lookup table against 102 uniformly heated round tube CHF data and 34 nonuniformly heated round tube CHF data. The comparison shows that the model provides better accuracy and a reasonable agreement between the predicted values and experimental CHF data.