ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Yoshiaki Oka, Sei-Ichi Koshizuka
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 295-302
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34852
Articles are hosted by Taylor and Francis Online.
The concept of a super critical-pressure, direct-cycle light water reactor is presented. Its feasibility is assessed by a study of its neutronic and thermal-hydraulic design. The system pressure is 250 bars. The coolant density decreases continuously in the core, and the coolant is fed directly to the turbines. This eliminates the recirculation system, steam separators, and dryers. The diameter of the reactor pressure vessel is smaller than that of a pressurized water reactor (PWR), and the vessel wall is not very thick despite the high pressure. The required core flow rate is about one-eighth that of a PWR. There are only two coolant loops in a 1145-MW(electric) reactor, and the turbines are smaller than those of a light water reactor. These features greatly simplify the reactor plant. The thermal efficiency is improved 19% over that of a PWR.