ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Aquilino Senra Martinez, Eugenio De Andrade Oliveira
Nuclear Technology | Volume 103 | Number 2 | August 1993 | Pages 288-293
Technical Note | Reactor Operation | doi.org/10.13182/NT93-A34850
Articles are hosted by Taylor and Francis Online.
Xenon and samarium concentrations changes occur in a nuclear reactor as a consequence of power level variations. To compensate for the reactivity introduced by these isotopes, the boron concentration in the reactor coolant also needs to be changed. Boron concentration changes result from boration or dilution operations. Both boration and dilution operations have economic effects due to the cost of boric acid and the treatment of the effluent. A method is presented that finds the nuclear power level change that leads to an optimization of the boration and dilution operations. The use of the method for practical applications is demonstrated by comparing the absolute reactivity change for the optimum power ramp and a ramp of ±3%/h. The numerical calculations are very fast. Thus, the method may be implemented in the process computer of any nuclear power plant.