ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Willard G. Winn
Nuclear Technology | Volume 103 | Number 2 | August 1993 | Pages 262-273
Technical Paper | Radiation Application | doi.org/10.13182/NT93-A34848
Articles are hosted by Taylor and Francis Online.
Germanium detector efficiencies for vial geometries are modeled as ε = k[1- exp(-bh)]/bh, where h is the sample fill-level of the vial and k and b are constants relative to h. The model is tested against experimental data generated with 6 germanium detectors (8.8 to 90% standard efficiencies), 3 vials (24- to 64-mm diameters, 4- to 65-mm fill-levels), and 11 gamma energies (88 to 1836 keV). These data represent over 1000 comparisons between the model and experimental measurements. The overall agreement is within a few percent, with average deviations <1.0% and root-mean-square deviations <3%. For typical applications, the model requires only a few (2 to 3) vial calibration measurements, as opposed to the larger number (6 to 8) typically used for empirical data fitting. Methods and examples are discussed for use of the general model. Limits of the gen eral model, attenuation corrections for different sample media, and nondestructive assay calibrations for slab samples are also discussed. Also, possible model extensions are discussed for including gamma-energy dependence and Marinelli counting geometries.