ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jae-Woong Song, Jong-Kyung Kim
Nuclear Technology | Volume 103 | Number 2 | August 1993 | Pages 157-167
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34840
Articles are hosted by Taylor and Francis Online.
An efficient nodal method for the solution of two-group, multidimensional neutron kinetics problems is presented. In this method, correction factors called discontinuity factors are calculated in advance by the nodal expansion method (NEM) at steady-state conditions, and the nodewise flux and power distributions during steady-state and transient conditions are calculated based on the discontinuity factors. The nodal balance equation using the discontinuity factors is expressed logically in a less complicated manner than in other nodal methods since the factors reflect all of the approximations, including classic spatial truncations. Additionally, the convergence of the transient problem can be greatly accelerated through a thermal leakage-to-absorption ratio (TLAR) scheme. The test results for the two-group, two-dimensional benchmark problems demonstrate that this new method has acceptable accuracy and is about two times faster without the TLAR scheme and about ten times faster with the TLAR scheme than other nodal methods (NEM or analytic nodal method) for transient applications in which assemblysize coarse nodes are used.