ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Jae-Woong Song, Jong-Kyung Kim
Nuclear Technology | Volume 103 | Number 2 | August 1993 | Pages 157-167
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34840
Articles are hosted by Taylor and Francis Online.
An efficient nodal method for the solution of two-group, multidimensional neutron kinetics problems is presented. In this method, correction factors called discontinuity factors are calculated in advance by the nodal expansion method (NEM) at steady-state conditions, and the nodewise flux and power distributions during steady-state and transient conditions are calculated based on the discontinuity factors. The nodal balance equation using the discontinuity factors is expressed logically in a less complicated manner than in other nodal methods since the factors reflect all of the approximations, including classic spatial truncations. Additionally, the convergence of the transient problem can be greatly accelerated through a thermal leakage-to-absorption ratio (TLAR) scheme. The test results for the two-group, two-dimensional benchmark problems demonstrate that this new method has acceptable accuracy and is about two times faster without the TLAR scheme and about ten times faster with the TLAR scheme than other nodal methods (NEM or analytic nodal method) for transient applications in which assemblysize coarse nodes are used.