ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Joon Gi Ahn, Nam Zin Cho, Jung Eui Kuh
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 114-121
Technical Note | Fission Reactor | doi.org/10.13182/NT93-A34834
Articles are hosted by Taylor and Francis Online.
The response rate of ex-core detectors depends on the power level, power distribution, and reactor configuration. For the analysis of the detector response rate for various core power distributions, it is important to generate spatial weighting functions that are insensitive to small changes in the core power distribution and determined by the reactor configuration. Two-dimensional discrete ordinates adjoint transport calculations are used to calculate the core axial weighting functions. The effects of the reactor operating conditions on the core axial weighting functions are analyzed, and it is found that the soluble boron concentration in the reactor coolant has little effect while the core power level affects the core axial weighting functions significantly. A comparison between the results of the adjoint and forward transport calculations shows an excellent agreement. However, the adjoint transport method provides more detailed data and requires less computing time than the forward transport method.