ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Yasuo Suzuki, Shoji Kimura
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 93-100
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT93-A34832
Articles are hosted by Taylor and Francis Online.
A continuous membrane column process that uses a palladium alloy membrane for the separation of hydrogen isotopes is studied. Hydrogen, deuterium, and tritium permeation rates obtained in previous studies are used in numerical calculations in which the nature of the membrane column is investigated through variations in the operation variables, such as the pressures and their ratio, the reflux ratio, and the stripping column velocity. Finally, a cascade design in which membrane columns are used as unit cells is developed, following a design study of a nuclear fusion reactor fuel cycle system, and the concentrations and flow rates are calculated. The results show that hydrogen, deuterium, and tritium can be separated and concentrated as well by this method as by the liquid hydrogen distillation process. The inventory of the membrane column process is also calculated, and it is ∼2.3 times the fuel processed in a day.