ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yasuo Suzuki, Shoji Kimura
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 93-100
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT93-A34832
Articles are hosted by Taylor and Francis Online.
A continuous membrane column process that uses a palladium alloy membrane for the separation of hydrogen isotopes is studied. Hydrogen, deuterium, and tritium permeation rates obtained in previous studies are used in numerical calculations in which the nature of the membrane column is investigated through variations in the operation variables, such as the pressures and their ratio, the reflux ratio, and the stripping column velocity. Finally, a cascade design in which membrane columns are used as unit cells is developed, following a design study of a nuclear fusion reactor fuel cycle system, and the concentrations and flow rates are calculated. The results show that hydrogen, deuterium, and tritium can be separated and concentrated as well by this method as by the liquid hydrogen distillation process. The inventory of the membrane column process is also calculated, and it is ∼2.3 times the fuel processed in a day.