Reactor dynamics and system stability studies are performed on a conceptual burst-mode gaseous core reactor space nuclear power system. This concept operates on a closed Brayton cycle in the burst mode (on the order of 100-MW output for a few thousand seconds) using a disk magnetohydrodynamic generator for energy conversion. The fuel is a gaseous mixture of UF4 or UF6 and helium. Nonlinear dynamic analysis is performed using circulating-fuel, point-reactor-kinetics equations along with thermodynamic, lumped-parameter heat transfer and one-dimensional isentropic flow equations. The gaseous nature of the fuel plus the fact that the fuel is circulating lead to dynamic behavior that is quite different from that of conventional solid-core systems. For the transients examined, Doppler fuel temperature and moderator temperature feedbacks are insignificant when compared with reactivity feedback associated with fuel gas density variations. The gaseous fuel density power coefficient of reactivity is capable of rapidly stabilizing the system, within a few seconds, even when large positive reactivity insertions are imposed; however, because of the strength of this feedback, standard external reactivity insertions alone are inadequate to bring about significant power level changes during normal reactor operation. Additional methods of reactivity control, such as changes in the gaseous fuel mass flow rate or core inlet pressure, are required to achieve desired power level control. Finally, linear stability analysis gives results that are qualitatively in agreement with the nonlinear analysis. Quantitatively, however, there are significant differences between the predictions from the linearized and nonlinear models, and this is due to the highly nonlinear nature of the fuel mass feedback.