Boiling water nuclear reactors (BWRs) may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate because of the tight coupling of flow to power, especially under gravity-driven circulation. To predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model is developed for a typical BWR. Using this tool, it is demonstrated that density waves may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases are analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. As predicted by others, the two-phase friction controls the extent of the oscillation. Because of this sensitivity, existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from one case to another. It is found that higher dimensional nuclear feedback models reduce the extent of the oscillation.