ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Michael J. Gaeta, Frederick R. Best
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 19-33
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34827
Articles are hosted by Taylor and Francis Online.
Space nuclear power systems utilize materials and processes that are completely different from terrestrial reactor systems. Therefore, the tools used to analyze ground-based systems are inappropriate for space reactor design and analysis. The purpose of this study was to develop a space reactor transient analysis tool and to apply this tool to scenarios of interest. The scope of the simulation includes the thermal and neutronic behavior of a liquid-metal-cooled fast reactor, the electrical and thermal performance of the thermoelectric generators, the thermal dynamics of heat pipe radiators, and the thermal behavior of the coolant piping between major components. The thermal model of the system is explicitly coupled to a momentum model of the primary and secondary coolant loops. A one-dimensional conduction model is employed in all solid component models. The reactor model includes an expression for energy generation due to fission and decay heat. The thermoelectric heat exchanger model accounts for thermal energy conversion to useful electrical output. The two-node radiator heat pipe model includes normal operation as well as limited heat pipe operation under sonic limit conditions. The reactor, thermoelectric heat exchanger, and heat pipe models are coupled explicitly by the coolant piping thermal model. The computer program is used to simulate a variety of transients including reactor power change, degradation of the radiator, and a temporary open circuit condition on the thermoelectrics.