ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Michael J. Gaeta, Frederick R. Best
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 19-33
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34827
Articles are hosted by Taylor and Francis Online.
Space nuclear power systems utilize materials and processes that are completely different from terrestrial reactor systems. Therefore, the tools used to analyze ground-based systems are inappropriate for space reactor design and analysis. The purpose of this study was to develop a space reactor transient analysis tool and to apply this tool to scenarios of interest. The scope of the simulation includes the thermal and neutronic behavior of a liquid-metal-cooled fast reactor, the electrical and thermal performance of the thermoelectric generators, the thermal dynamics of heat pipe radiators, and the thermal behavior of the coolant piping between major components. The thermal model of the system is explicitly coupled to a momentum model of the primary and secondary coolant loops. A one-dimensional conduction model is employed in all solid component models. The reactor model includes an expression for energy generation due to fission and decay heat. The thermoelectric heat exchanger model accounts for thermal energy conversion to useful electrical output. The two-node radiator heat pipe model includes normal operation as well as limited heat pipe operation under sonic limit conditions. The reactor, thermoelectric heat exchanger, and heat pipe models are coupled explicitly by the coolant piping thermal model. The computer program is used to simulate a variety of transients including reactor power change, degradation of the radiator, and a temporary open circuit condition on the thermoelectrics.