ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Anna A. Afanasieva, Evgeniy V. Burlakov, Alexander V. Krayushkin, Andre V. Kubarev
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 1-9
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34825
Articles are hosted by Taylor and Francis Online.
When the causes of the accident at Chernobyl Unit 4 on April 26, 1986, were studied, particular attention was given to the positive void reactivity coefficient and the dynamic characteristics of the shutdown system. The role of these factors in the development of the accident is discussed. The physical nature of the void reactivity coefficient is considered. Safety measures added to the remaining RBMK-type reactors are described. These measures include installation of 80 stationary neutron absorbers in the core to decrease the void reactivity coefficient as well as modification of the absorber rods. The results of reactor parameter measurements after these measures were implemented are presented. The calculation methods are outlined, and the changes in the neutron physics characteristics after the Chernobyl accident are described. The measures taken to improve the safety of RBMK reactors preclude the possibility of another accident of the Chernobyl type. Possible further improvements in the operation of an RBMK reactor are discussed.