ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ho Nieh, TVA board members, and nuclear fuel recycling bill head to Senate floor
Nieh
Ho Nieh, the Trump administration’s nominee to be a member of the Nuclear Regulatory Commission, and four new board members of the Tennessee Valley Authority were approved in a vote today by the Senate Environment and Public Works Committee and head to the Senate floor for a final vote.
The committee also voted to advance to the Senate floor the Nuclear REFUEL Act of 2025 (S. 2082), which would smooth the regulatory pathway for recycling used nuclear fuel.
President Donald nominated Nieh on July 30 to serve as NRC commissioner for the remainder of a term set to expire June 30, 2029, which was held by former NRC commissioner Chris Hanson, who Trump fired in June.
E. Teuchert, K. A. Haas, H. J. Rütten, Yuliang Sun
Nuclear Technology | Volume 102 | Number 2 | May 1993 | Pages 192-195
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT93-A34816
Articles are hosted by Taylor and Francis Online.
In high-temperature reactors (HTRs), ingress of water introduces positive reactivity. Normally, this is controlled by the reactor itself, but in hypothetical situations, there could be a need for an active support by the control system. Calculational research identifies three reasons for the reactivity change caused by the water: (a) a negative contribution by the absorption of the hydrogen, (b) a positive contribution by the softening of the neutron energy spectrum, and (c) a reduction of the neutron leakage losses due to a shift in the neutron flux local distribution. By increasing the carbon/heavy metal ratio, the reactivity effect can be reduced to almost zero or even to negative values. In the modular pebble-bed HTR, this effect can be accomplished in a simple manner. By adding 25% of graphite spheres to the regular batches of feed fuel elements, the neutron spectrum effect is reduced, and the fractional absorption of hydrogen is increased; thus, the maximum excess reactivity is limited to 0.3%. The effect on economy and safety is negligible.