ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mohamed S. El-Genk, Huimin Xue, Chris Murray
Nuclear Technology | Volume 102 | Number 2 | May 1993 | Pages 145-166
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34813
Articles are hosted by Taylor and Francis Online.
A thermionic transient analysis model is developed to simulate transient and steady-state operations of a fully integrated, single-cell thermionic fuel element (TFE). The responses of the TFE to a step input in reactivity and changes in the cesium pressure or in the size of the interelectrode gap, the coolant temperature, and the load demand are investigated. Also, the effects of these parameters on the load electric power, emitter temperature, overall conversion efficiency, and load-following characteristics of the TFE are determined. Results show that although nuclear reactors having negative temperature reactivity coefficients are always load following, TFEs are only partially load following. For TFEs having a large interelectrode gap, it is desirable to conserve cesium by lowering its vapor pressure at the beginning of life since increasing the cesium pressure insignificantly affects the load electric power. However, should fuel swelling reduce the width of the interelectrode gap (after operating the reactor for an extended period of time), both the conversion efficiency and the load electric power will decrease. In this case, the load electric power could be restored by increasing the fission power and only partially by increasing the cesium vapor pressure.