ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Mohamed S. El-Genk, Huimin Xue, Chris Murray
Nuclear Technology | Volume 102 | Number 2 | May 1993 | Pages 145-166
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34813
Articles are hosted by Taylor and Francis Online.
A thermionic transient analysis model is developed to simulate transient and steady-state operations of a fully integrated, single-cell thermionic fuel element (TFE). The responses of the TFE to a step input in reactivity and changes in the cesium pressure or in the size of the interelectrode gap, the coolant temperature, and the load demand are investigated. Also, the effects of these parameters on the load electric power, emitter temperature, overall conversion efficiency, and load-following characteristics of the TFE are determined. Results show that although nuclear reactors having negative temperature reactivity coefficients are always load following, TFEs are only partially load following. For TFEs having a large interelectrode gap, it is desirable to conserve cesium by lowering its vapor pressure at the beginning of life since increasing the cesium pressure insignificantly affects the load electric power. However, should fuel swelling reduce the width of the interelectrode gap (after operating the reactor for an extended period of time), both the conversion efficiency and the load electric power will decrease. In this case, the load electric power could be restored by increasing the fission power and only partially by increasing the cesium vapor pressure.