ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mark A. Tries, Leo M. Bobek
Nuclear Technology | Volume 145 | Number 3 | March 2004 | Pages 319-323
Technical Note | Nuclear Plant Operations and Control | doi.org/10.13182/NT04-A3481
Articles are hosted by Taylor and Francis Online.
A method is presented for the determination of the leakage rate for containment vessels of water-cooled reactors. The method is applicable to Type A tests for which the containment vessel is pressurized to some initial overpressure, and subsequent measurements of absolute air pressure and temperature are made to determine the leakage rate. The proposed method incorporates the desirable features of the recommended method for the determination of the leakage rate, namely, that the measured data all have equal statistical weight, the leakage rate is not estimated using finite differences, and the leakage rate is normalized to the initial air content in the containment vessel. The major assumptions of the proposed method are incompressible airflow and a constant absolute air temperature. The proposed method is based on a reasonably accurate description of absolute dry air pressure over time, for which parameters are obtained using a linear regression technique on the transformed pressure measurements. Under the given assumptions the transformed pressure measurements are linear, and therefore, the proposed method avoids the drawback that is encountered in the recommended method of applying a linear model to nonlinear data. The pressure function then is used to determine the leakage rate as a function of time and the integral leakage rate for the duration of the test. Also, the method is readily adaptable to scaling the integral leakage rate to different initial air pressures in the containment vessel. In addition, the assumption of an incompressible airflow is considered to be reasonable for initial Mach numbers less than or equal to 0.4.