ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Masafumi Itagaki, Yoshinori Miyoshi, Kazuhiko Gakuhari, Noboru Okada, Tomohiro Sakai
Nuclear Technology | Volume 102 | Number 1 | April 1993 | Pages 125-136
Technical Paper | Mixed-Oxide Fuel / Reactor Operation | doi.org/10.13182/NT93-A34808
Articles are hosted by Taylor and Francis Online.
Unexpected deviations of ex-core neutron detector signals were observed during a voyage of the Japanese nuclear ship, Mutsu. From detailed three-dimensional analyses, this phenomenon was determined to be caused by an asymmetrical neutron source distribution in the core due to a small misalignment between the two control rods of a control rod group. A systematic ex-core detector response experiment was performed during the Mutsu’s third experimental voyage to gain some understanding of the relationship between the control rod pattern and the detector response characteristics. Results obtained from analyses of the experiment indicate that the Crump-Lee technique, using calculated three-dimensional source distributions for various control rod patterns, provides good agreement between the calculated and measured detector responses. Xenon transient analyses were carried out to generate accurate three-dimensional source distributions for predicting the time-dependent detector response characteristics. Two types of ex-core detector responses are caused by changes in the control rod pattern in the Mutsu reactor: The detector response ratio tends to decrease with the withdrawal of a group of control rods as a pair, and a difference in the positions of the control rods in a group causes signal deviations among the four ex-core detectors. Control rod misalignment does not greatly affect the mean value of the four detector signals, and the deviation can be minimized if the two rods within a group are set at the same elevation at the time of detector calibration.