ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Masafumi Itagaki, Yoshinori Miyoshi, Kazuhiko Gakuhari, Noboru Okada, Tomohiro Sakai
Nuclear Technology | Volume 102 | Number 1 | April 1993 | Pages 125-136
Technical Paper | Mixed-Oxide Fuel / Reactor Operation | doi.org/10.13182/NT93-A34808
Articles are hosted by Taylor and Francis Online.
Unexpected deviations of ex-core neutron detector signals were observed during a voyage of the Japanese nuclear ship, Mutsu. From detailed three-dimensional analyses, this phenomenon was determined to be caused by an asymmetrical neutron source distribution in the core due to a small misalignment between the two control rods of a control rod group. A systematic ex-core detector response experiment was performed during the Mutsu’s third experimental voyage to gain some understanding of the relationship between the control rod pattern and the detector response characteristics. Results obtained from analyses of the experiment indicate that the Crump-Lee technique, using calculated three-dimensional source distributions for various control rod patterns, provides good agreement between the calculated and measured detector responses. Xenon transient analyses were carried out to generate accurate three-dimensional source distributions for predicting the time-dependent detector response characteristics. Two types of ex-core detector responses are caused by changes in the control rod pattern in the Mutsu reactor: The detector response ratio tends to decrease with the withdrawal of a group of control rods as a pair, and a difference in the positions of the control rods in a group causes signal deviations among the four ex-core detectors. Control rod misalignment does not greatly affect the mean value of the four detector signals, and the deviation can be minimized if the two rods within a group are set at the same elevation at the time of detector calibration.