ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Stojan Petelin, Borut Mavko, Oton Gortnar
Nuclear Technology | Volume 102 | Number 1 | April 1993 | Pages 116-124
Technical Paper | Mixed-Oxide Fuel / Nuclear Reactor Safety | doi.org/10.13182/NT93-A34807
Articles are hosted by Taylor and Francis Online.
A split reactor vessel model for the RELAP5/MOD2 computer code is developed in an attempt to realize more realistic predictions of asymmetrical transients in a two-loop nuclear power plant. Based on this split reactor model, coolant mixing processes within the reactor vessel are examined. This study evaluates the model improvements in terms of thermal-hydraulic simulations of the reactor core inlet fluid condition and the consequent core behavior. Furthermore, the split reactor vessel model is introduced into an integral RELAP5/MOD2 power plant model, and a steamline break analysis is performed to determine the influence of the boron concentration in the boron injection tank on accident consequences.