ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Masatoshi Nakagawa
Nuclear Technology | Volume 102 | Number 1 | April 1993 | Pages 81-89
Technical Paper | Mixed-Oxide Fuel / Fission Reactor | doi.org/10.13182/NT93-A34804
Articles are hosted by Taylor and Francis Online.
Validation of the ÉTOILE code through a comparison with experimental bundle/duct interaction (BDI) data is discussed. ÉTOILE is a newly developed three-dimensional finite element program that uses a new analytical method to predict distortions and mechanical behavior in wire-wrapped-type fuel-pin bundles during irradiation in liquid-metal fast breeder reactor cores. Comparisons between the ÉTOILE solutions and the experimental data for bundle stiffnesses and minimum pin-to-pin and pin-to-duct clearances under bundle compression suggest that BDI performance can be predicted reasonably well with a suitable choice of friction coefficient and initial spiral wire displacement. Application of the code in the analysis of the mechanical behavior of soft bundles with distributed wireless pins is also presented to demonstrate the effectiveness of this design in reducing the interaction forces between a fuel-pin bundle and a duct wall under bundle compression. Agreement with the experimental data is fairly good for the reduction in bundle stiffness when the configuration is changed from the normal bundle to the soft bundle.