ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hans-Werner Wiese
Nuclear Technology | Volume 102 | Number 1 | April 1993 | Pages 68-80
Technical Paper | Mixed-Oxide Fuel / Nuclear Fuel Cycle | doi.org/10.13182/NT93-A34803
Articles are hosted by Taylor and Francis Online.
Based on the use of the Joint Evaluated File (JEF-1) with the KARBUS burnup code system and subsequent KORIGEN code calculations, the characteristics of spent pressurized water reactor mixed-oxide (MOX) fuels are analyzed. Actinide masses, decay heat, radioactivities, and radiation are discussed for burnups of 40 to 55 GWd/tonne HM for MOX fuels based on natural uranium and on uranium tailings. Multiple plutonium recycling is considered at a burnup of 50 GWd/tonne HM. The results are compared with earlier data at a burnup of 33 GWd/tonne HM. The high-exposure MOX fuels are found to contain large amounts of the heat-releasing and radiating nuclides, 238Pu and 244Cm. The 238Pu in the plutonium, which is to be used for the fabrication of fuel elements from recycled MOX, requires special shielding or a change from glove box techniques to an automated treatment.