ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Theo G. Theofanous, Hongfei Yan
Nuclear Technology | Volume 101 | Number 3 | March 1993 | Pages 332-353
Technical Paper | Severe Accident Technology / Nuclear Reactor Safety | doi.org/10.13182/NT93-A34793
Articles are hosted by Taylor and Francis Online.
This is the second part of a three-part series of papers addressing the probability of liner failure in a Mark-I containment. The purpose is to quantify melt release and spreading phenomena in a form suitable for use in the probabilistic framework as discussed in the first part of this series. The quantification of melt release parameters (quantity, superheat, and zirconium content) is derived from an assessment of available system code results and certain independent auxiliary considerations of the physics of the meltdown and slumping processes in the relevant geometries. The quantification of melt spreading phenomena is based primarily on simulant scaled experiments run specifically for this purpose; however, auxiliary considerations of the physics of operative cooling and quenching mechanisms also play a significant role in this assessment.