ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Theo G. Theofanous, Hongfei Yan, Farouk Eltawila
Nuclear Technology | Volume 101 | Number 3 | March 1993 | Pages 299-331
Technical Paper | Severe Accident Technology / Nuclear Reactor Safety | doi.org/10.13182/NT93-A34792
Articles are hosted by Taylor and Francis Online.
An integrated analysis of Mark-I liner attack in a postulated core-melt accident is presented. The approach consists of the mechanistic treatment of the sequence of physical phenomena that lead to liner contact by corium debris and their coupling through a probabilistic framework that allows representation of uncertainties. A physically consistent treatment in each sequence is emphasized, but qualitatively different scenarios to represent the range of behavior due to model uncertainties are allowed. The results are presented in a format that allows their direct use in probabilistic risk assessments; in particular, expert opinion is incorporated by a new methodological approach that involves expert review of, and comment on, a fully documented study all under one cover. The study itself is presented in three parts here; the expert inputs can be found in NUREG/CR-5423.