ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sang H. Yoon, Kune Y. Suh
Nuclear Technology | Volume 145 | Number 3 | March 2004 | Pages 298-310
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3479
Articles are hosted by Taylor and Francis Online.
Sweepout from the water surface by gas (vapor or air) flow plays an important role in analyzing the mass and momentum transfer in the reactor downcomer of multidimensional geometry during a loss-of-coolant accident by decreasing the water level in the downcomer. The core water level will tend to decrease rapidly if a considerable amount of the entrained water stream and droplets pass through the break in lieu of flooding the reactor. The amount of entrained water is mostly determined by the interacting gas flow rate, the geometric condition, and the interfacial area between the gas and the water. The sweepout is observed to take place in three rather distinct regions: at the beginning of oscillation, at the full wave, and at the wave peak (droplet separation). The beginning of oscillation normally occurs as a result of the Helmholtz instability, which is defined in terms of the difference between the gas and the liquid velocities. The horizontal water surface is waved greatly before the gas flow reaches the critical point of droplet detachment. In the full-wave region, the droplets from the rough wave are swept into the gas flow and driven to the break. The water stream and droplets near the wave-peak region pass through the break at extremely high velocities.In view of these observations this paper investigates the relation between the gas flow rate and the amount of bypass as a function of time. The test facility was constructed in a 1/10 linear scaled-down model from the 1400-MW(electric) Advanced Power Reactor 1400 (APR1400), which has four direct vessel injection lines, four cold legs, and two hot legs. The air was injected through the three intact cold legs and passed through the broken cold leg. The sweepout was visualized from the acrylic test vessel. When the water level was located at the bottom of the break nozzle, the amount of bypass increased at the high Reynolds number of the gas. In the test the downcomer water level rapidly decreased for the initial minute. Then, given the Reynolds number of the gas, the sweepout hardly occurred as the water level approached the critical point 10 min into the test. So far, the experiment and the analysis for the sweepout have been limited to small annuli, flat plates, and T-junctions, which yielded the two-dimensional flow field. The current experimental results shed light on the flow mechanism and the semiempirical relations for the three-dimensional sweepout in a large-diameter annulus such as the reactor downcomer. The sweepout and entrainment are physically understood by visual inspection of flow in the downcomer. An engineering correlation is developed to predict the multidimensional sweepout and entrainment in the annular downcomer.