ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Dana A. Powers, Ervin R. Copus, David R. Bradley
Nuclear Technology | Volume 101 | Number 3 | March 1993 | Pages 255-261
Technical Paper | Severe Accident Technology / Nuclear Reactor Safety | doi.org/10.13182/NT93-A34788
Articles are hosted by Taylor and Francis Online.
Studies of core debris interaction with concrete have been extensive over the last decade. These studies have reached a climax in recent tests of the interactions of prototypical melts of UO2, ZrO2, zirconium, and stainless steel with concrete. Zirconium metal has been found to have profound effects on melt interactions with concrete. Zirconium metal reacts with condensed-phase products of concrete decomposition as well as with steam and carbon dioxide evolved from the concrete. Models of core debris interactions with concrete have been modified to include heat produced by the condensed-phase reactions of zirconium. The modified models predict well the high-temperature interactions of prototypical melts with concrete. Discrepancies between predictions and observations are being addressed by improving models of phase relationships in the melt-concrete system.