ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Chlng-Kong Chao, Che-Chung Tseng
Nuclear Technology | Volume 101 | Number 2 | February 1993 | Pages 202-211
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT93-A34781
Articles are hosted by Taylor and Francis Online.
A loading-rate-dependent model has been developed for the analysis of pellet/cladding mechanical interaction that takes the power ramp rate into account. Based on knowledge of the local strain rate behavior, the effect of ramp rate on fuel rod performance is well described by using the strain energy density criterion. The threshold value of the strain energy density for fuel cladding is determined from the Studsvik Inter-Ramp Project experimental data in conjunction with stress analysis. The critical strain energy density for recrystallized Zircaloy-2 is found to be 0.32 MPa. With this value, the damage zone of cladding for a specific fuel rod design under various burnups, ramp rates, and ramped terminal linear heat generation rates can be established, and the ramp rate effect is well identified.