ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Joonhong Ahn, Atsuyuki Suzuki
Nuclear Technology | Volume 101 | Number 1 | January 1993 | Pages 79-91
Technical Paper | Waste Management Special / Radioactive Waste Disposal | doi.org/10.13182/NT93-A34769
Articles are hosted by Taylor and Francis Online.
A mathematical analysis of the diffusion of the 241Am → 237Np decay chain in the artificial barrier of a high-level radioactive waste repository is presented. First, analytical solutions obtained are for the space- and time-dependent concentration of 241 Am in the artificial barrier and the time-dependent amount of americium precipitated at the surface of the waste glass, based on the assumption of the congruency of the radionuclides with solubility-limited dissolution of the glass matrix. The effects of solubility sharing with coexisting 243Am are considered. Transport and precipitation of 237Np in the artificial barrier are analyzed by dividing the time domain into a small time domain, where the 241Am concentration is so large that 237Np precipitation is dominant, and a large time domain, where the 241Am becomes negligible and the precipitation region shrinks by diffusion from the precipitation front. The equation for the movement of the precipitation front is obtained. As the overpack lifetime increases, the effect of neptunium precipitation becomes less significant. With a lifetime longer than ∼6000 yr, an earlier model, where neptunium is treated as a mother nuclide and the precipitation occurs only at the glass surface, can be used. With the solubility for Np(OH)4, the effect of neptunium precipitation is as small as a factor of 2 in terms of the maximum mass release rate at the outer boundary of the artificial barrier, and the earlier model can be used for safety assessment. With the solubility for NpO2, the current model gives a maximum mass release rate at the outer boundary that is one order of magnitude greater than the previous one.