ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Joonhong Ahn, Atsuyuki Suzuki
Nuclear Technology | Volume 101 | Number 1 | January 1993 | Pages 79-91
Technical Paper | Waste Management Special / Radioactive Waste Disposal | doi.org/10.13182/NT93-A34769
Articles are hosted by Taylor and Francis Online.
A mathematical analysis of the diffusion of the 241Am → 237Np decay chain in the artificial barrier of a high-level radioactive waste repository is presented. First, analytical solutions obtained are for the space- and time-dependent concentration of 241 Am in the artificial barrier and the time-dependent amount of americium precipitated at the surface of the waste glass, based on the assumption of the congruency of the radionuclides with solubility-limited dissolution of the glass matrix. The effects of solubility sharing with coexisting 243Am are considered. Transport and precipitation of 237Np in the artificial barrier are analyzed by dividing the time domain into a small time domain, where the 241Am concentration is so large that 237Np precipitation is dominant, and a large time domain, where the 241Am becomes negligible and the precipitation region shrinks by diffusion from the precipitation front. The equation for the movement of the precipitation front is obtained. As the overpack lifetime increases, the effect of neptunium precipitation becomes less significant. With a lifetime longer than ∼6000 yr, an earlier model, where neptunium is treated as a mother nuclide and the precipitation occurs only at the glass surface, can be used. With the solubility for Np(OH)4, the effect of neptunium precipitation is as small as a factor of 2 in terms of the maximum mass release rate at the outer boundary of the artificial barrier, and the earlier model can be used for safety assessment. With the solubility for NpO2, the current model gives a maximum mass release rate at the outer boundary that is one order of magnitude greater than the previous one.