ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Jon C. Helton
Nuclear Technology | Volume 101 | Number 1 | January 1993 | Pages 18-39
Technical Paper | Waste Management Special / Radioactive Waste Disposal | doi.org/10.13182/NT93-A34765
Articles are hosted by Taylor and Francis Online.
A conceptual model for the organization and execution of a performance assessment of a radioactive waste disposal site, including uncertainty and sensitivity analysis, is described. This model is based on a formal definition of risk as a collection of ordered triples, where the first element in each triple is a set of similar occurrences (i.e., a scenario), the second element is the probability or frequency of the first element, and the third element is a vector of consequences associated with the first element. This division of risk into its three constituent parts provides a useful model for the structure of a performance assessment for several reasons. First, it provides a clear distinction between the major parts of a performance assessment, which are determining what can happen, determining how likely things are to happen, and determining what the consequences of specific events are. Second, it provides a way to distinguish between different types of uncertainty, including completeness, aggregation, model selection, imprecisely known variables, and stochastic variation. Third, it leads naturally to the representation of stochastic variation with a complementary cumulative distribution function (CCDF) and the representation of state of knowledge uncertainty with a family or distribution of CCDFs. Fourth, it provides a context in which the U.S. Environmental Protection Agency limits for radioactive releases to the accessible environment can be represented and calculated. Fifth, it facilitates relating the development of scenarios and their probabilities to the concepts used in formal probability theory. The preceding ideas are illustrated with results obtained in a preliminary performance assessment for the Waste Isolation Pilot Plant in southeastern New Mexico.