ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Bernard Bonin, Dominique Grenéche, Frank Carré, Frédéric Damian, Jean-Yves Doriath
Nuclear Technology | Volume 145 | Number 3 | March 2004 | Pages 266-274
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT04-A3476
Articles are hosted by Taylor and Francis Online.
High-temperature gas-cooled reactors (HTRs) are able to accommodate a wide variety of mixtures of fissile and fertile materials without any significant modification of the core design. This flexibility is due to an uncoupling between the parameters of cooling geometry and the parameters that characterize neutronic optimization (moderation ratio or heavy nuclide concentration and distribution).Among other advantageous features, an HTR core has a better neutron economy than a light water reactor (LWR) because there is much less parasitic capture in the moderator (capture cross section of graphite is 100 times less than the one of water), in internal structures, and in fission products (because of a harder spectrum).Moreover, thanks to the high strength of the coated particles, HTR fuels are able to reach very high burnups, far beyond the possibilities offered by other fuels (except the special case of molten salt reactors).These features make HTRs potentially interesting for closing the nuclear fuel cycle and stabilizing the plutonium inventory.A large number of fuel cycle studies are already available today on three main categories of fuel cycles involving HTRs: (a) high-enriched uranium cycle, based on thorium utilization as a fertile material and high-enriched uranium as a fissile material; (b) low-enriched uranium cycle (LEU), where only LEU is used (from 5 to 15%); (c) plutonium cycle based on the utilization of plutonium only as a fissile material, with (or without) fertile materials.Plutonium consumption at high burnups in HTRs has already been tested with encouraging results under the DRAGON project and at Peach Bottom. To maximize plutonium consumption, recent core studies have also been performed on plutonium HTR cores, with special emphasis on weapon-grade plutonium consumption. We complete the picture by a core study for an HTR burning reactor-grade plutonium. Limits in burnup due to core neutronics are investigated for this type of core.With these limits in mind, we study in some detail the Pu cycle in the special case of a reactor fleet made of a mixture of LWRs and HTRs. It is reasonable to assume that if HTRs are to be deployed on an industrial scale, they will coexist during a long period of time with already existing LWRs. The present paper investigates the symbiotic behavior of LWRs producing plutonium and of HTRs burning it.