ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Paul E. Murray
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 135-140
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34759
Articles are hosted by Taylor and Francis Online.
The numerical solution of heat transfer problems may involve substantial execution time, and much of the execution time may be spent in the matrix solver. Iterative solution methods may be more efficient than direct methods for solving a large matrix equation. Although iterative methods have been applied to many fields of engineering simulation, they are not widely used in nuclear reactor simulation. Moreover, the selection of a suitable iterative method depends on the problem. Heat transfer in nuclear reactors is a complex process that includes solid conduction, fluid advection, radiation, and convection between solid and fluid. Thus, the feasibility of matrix iterative solution methods is investigated, and the numerical performance of a selected iterative method is assessed. The preconditioned generalized conjugate residual (PGCR) method is an iterative method used in the integrated systems code (ISC) to simulate heat transfer in a modular high-temperature gas-cooled reactor. The numerical performance of the PGCR method is assessed to determine the computational requirements of the ISC. A steady-state heat transfer problem that includes conduction, convection, advection, and radiation heat transfer is solved in the performance study. The execution time of the PGCR method is obtained in the cases of four matrix sizes and three values of the heat transfer Biot number. The Biot number is varied to examine a complete range of convective heat transfer conditions. The execution time per equation is 0.22 to 0.55 ms on the Cray X-MP and 1.6 to 5.0 ms on the Dec 5000 workstation. These results show that the PGCR method is effective for nuclear reactor heat transfer calculations and provides an efficient and reliable computational performance.