ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
SC Nuclear Summit focuses on V.C. Summer
The second annual South Carolina Nuclear Summit held last week featured utility executives and legislators from the state, as well as leaders from Brookfield Asset Management, which is being considered to restart construction on the two abandoned reactors at the V.C. Summer nuclear power plant in Fairfield County. The summit, at the University of South Carolina’s Colonial Life Arena, attracted more than 350 attendees. The event was hosted by the university’s Molinaroli College of Engineering and Computing.
Paul E. Murray
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 135-140
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34759
Articles are hosted by Taylor and Francis Online.
The numerical solution of heat transfer problems may involve substantial execution time, and much of the execution time may be spent in the matrix solver. Iterative solution methods may be more efficient than direct methods for solving a large matrix equation. Although iterative methods have been applied to many fields of engineering simulation, they are not widely used in nuclear reactor simulation. Moreover, the selection of a suitable iterative method depends on the problem. Heat transfer in nuclear reactors is a complex process that includes solid conduction, fluid advection, radiation, and convection between solid and fluid. Thus, the feasibility of matrix iterative solution methods is investigated, and the numerical performance of a selected iterative method is assessed. The preconditioned generalized conjugate residual (PGCR) method is an iterative method used in the integrated systems code (ISC) to simulate heat transfer in a modular high-temperature gas-cooled reactor. The numerical performance of the PGCR method is assessed to determine the computational requirements of the ISC. A steady-state heat transfer problem that includes conduction, convection, advection, and radiation heat transfer is solved in the performance study. The execution time of the PGCR method is obtained in the cases of four matrix sizes and three values of the heat transfer Biot number. The Biot number is varied to examine a complete range of convective heat transfer conditions. The execution time per equation is 0.22 to 0.55 ms on the Cray X-MP and 1.6 to 5.0 ms on the Dec 5000 workstation. These results show that the PGCR method is effective for nuclear reactor heat transfer calculations and provides an efficient and reliable computational performance.