ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sandra M. Sloan, Yassin Hassan
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 111-124
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34757
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulics simulation codes RELAP5/MOD2 and RELAP5/MOD3 are utilized to calculate the phenomena that occurred during a small-break loss-of-coolant accident (LOCA) simulation conducted at the ROSA-IV Large-Scale Test Facility. The objectives of the work are to analyze RELAP5/MOD2 and RELAP5/MOD3 predictions of a small-break LOCA simulation and to compare the ability of each code version to accurately predict the important physical phenomena of the experiment. The RELAP5/MOD2 and RELAP5/MOD3 predictions are compared with each other and assessed against the experimental results. The overall conclusion is that both code versions predict trends well, but each differs in the prediction of the magnitude and timing of occurrences. Specific areas of difference include primary system pressure, differential pressure in the upper plenum, core liquid level depression and subsequent heatup, core void fraction profile, and the differential pressure in the steam generator inlet plenum. All but the last of these differences are related to the RELAP5/MOD3 prediction of excessive liquid holdup in the upper plenum during the first core liquid depression, which is believed to lead to the prediction of water trickling into the upper core volumes and providing a cooling mechanism not present during the experiment. The liquid holdup is believed to be the result of an overprediction of interphase drag at the junctions between the upper plenum volumes. The trends of increase and decrease in steam generator liquid inventory are more correctly calculated by RELAP5/MOD3 than RELAP5/MOD2 because of the implementation of a countercurrent flow limitation equation at the inlet to the steam generator U-tubes. Although the results of any single exercise are not sufficient to make a global assessment of code performance capabilities, this study identifies an area that should be investigated more fully in future code assessment exercises by utilizing experimental data from transients that will further exercise the interphase drag computation capability of the code.