ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Michael D. Allen, Martin M. Pilch, Richard O. Griffith, Robert T. Nichols
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 52-69
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34753
Articles are hosted by Taylor and Francis Online.
The limited flight path experiments investigate the effect of reactor subcompartment flight path length on direct containment heating (DCH) in a severe reactor accident. The test series consists of eight experiments with nominal flight paths of 1, 2, or 8 m. A thermitically generated mixture of iron, chromium, and alumina simulates the corium melt of a severe accident in a light water reactor. After thermite ignition, superheated steam forcibly ejects the molten debris into a 1:10 linear scale model of either the Surry or Zion reactor cavity. The blowdown steam entrains the molten debris and disperses it into a 103-m3 containment model. The vessel pressure, gas temperature, debris temperature, hydrogen produced by steam/metal reactions, debris velocity, mass dispersed into the Surtsey vessel, and debris particle size are measured for each experiment. The measured peak pressure for each experiment is normalized by the total amount of energy introduced into the Surtsey vessel and increases with lengthened flight path. The debris temperature at the cavity exit is ∼2320 K. Gas grab samples indicate that steam in the cavity reacts rapidly to form hydrogen, so the driving gas is a mixture of steam and hydrogen. In these experiments, ∼70% of the steam driving gas is converted to hydrogen. These experiments indicate that the bulk of DCH interactions occur below the subcompartment structure, not in the upper dome of Surtsey. The effect of deentrainment by reactor subcompartments may significantly reduce the peak containment load in a severe reactor accident.