ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jeffrey T. Dillingham, James H. Stuhmiller
Nuclear Technology | Volume 100 | Number 2 | November 1992 | Pages 260-270
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34747
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) in boiling water and pressurized water reactors is investigated using a three-pronged approach. First, a physically realistic and mathematically rigorous computational model is developed to describe and simulate the transitions between flow regimes. This is called the dynamic flow regime model (DFRM). Second, extensive reanalysis of the Columbia University CHF experimental data is performed to shed light on the processes at work. This analysis indicates that the mechanism for wall drying may not follow conventional wisdom. The DFRM has therefore been supplemented with a semiempirical liquid entrainment model, which accounts for the dynamics of bubble formation. The model produces CHF predictions that agree with the Columbia data slightly better than the Columbia correlation function. Third, to develop a mechanistic understanding of the empirical model, detailed microscale simulations of boiling are performed using the EITACC computer code. EITACC solves the Navier-Stokes equations for three-dimensional two-phase flow using a finite difference method. EITACC has been used to produce time-lapse images of bubble formation at a wall during subcooled boiling. These images provide insight into the mechanisms of bubble separation from the wall, bubble collapse due to condensation, wall drying, and liquid entrainment. This insight is used to improve and validate the DFRM.