ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
U. Kamachi Mudali, R. K. Dayal, J. B. Gnanamoorthy
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 395-402
Technical Note | Enrichment and Reprocessing System | doi.org/10.13182/NT92-A34734
Articles are hosted by Taylor and Francis Online.
Titanium anodes with coatings of mixed oxides of RuO2 and TiO2 and RuO2, TiO2, and PtO2 are prepared by a thermal decomposition method, which consists of applying coating solutions containing salts of ruthenium, titanium, and platinum over a pretreated titanium surface, drying, and heat treating at 775 K for 1 h. X-ray diffraction studies on these samples confirm the presence of oxide phases of RuO2, rutile TiO2, and PtO2 over the surface. Scanning electron microscope observations show that the microcracks in the coating decrease as the RuO2 content is increased and that the PtO2 overlay generally has fewer microcracks. X-ray photoelectron spectroscopy analyses indicate the presence of ruthenium as Ru4+, titanium as Ti4+ and platinum as elemental platinum as well as Pt2+ and Pt4+ in the coating. Testing of these anodes during the electro-oxidative dissolution of UC and (U,Pu)C in an HNO3 medium containing cerium nitrate indicates that the anode with a lower RuO2 content can be used only up to 340 K, whereas with an increase in the RuO2 content as well as with an overlay of PtO2, the anodes can be used even in a boiling nitric acid medium with improved cell performance.