Titanium anodes with coatings of mixed oxides of RuO2 and TiO2 and RuO2, TiO2, and PtO2 are prepared by a thermal decomposition method, which consists of applying coating solutions containing salts of ruthenium, titanium, and platinum over a pretreated titanium surface, drying, and heat treating at 775 K for 1 h. X-ray diffraction studies on these samples confirm the presence of oxide phases of RuO2, rutile TiO2, and PtO2 over the surface. Scanning electron microscope observations show that the microcracks in the coating decrease as the RuO2 content is increased and that the PtO2 overlay generally has fewer microcracks. X-ray photoelectron spectroscopy analyses indicate the presence of ruthenium as Ru4+, titanium as Ti4+ and platinum as elemental platinum as well as Pt2+ and Pt4+ in the coating. Testing of these anodes during the electro-oxidative dissolution of UC and (U,Pu)C in an HNO3 medium containing cerium nitrate indicates that the anode with a lower RuO2 content can be used only up to 340 K, whereas with an increase in the RuO2 content as well as with an overlay of PtO2, the anodes can be used even in a boiling nitric acid medium with improved cell performance.