ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Man-Sung Yim, John M. Christenson
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 361-377
Technical Paper | Reactor Operation | doi.org/10.13182/NT92-A34731
Articles are hosted by Taylor and Francis Online.
The control characteristics of a load-following pressurized water reactor are investigated through the application of a nonlinear optimization method to a simplified plant simulator. A model describing the power level control and power distribution control is developed and used to formulate an optimal control problem. In the optimal control problem formulation, all of the safety and system operating limits are included as hard constraints, and the multiple objective functionals are combined into a single performance index. The differences in the calculated optimal load-following control strategies are investigated for the cases of steady-state Tavg (coolant average temperature) program operation and variable Tavg operation at both beginning-of-cycle and near end-of-cycle conditions. The results show that the amount of boron control action for the demanded load variations can be significantly reduced when variable Tavg operation is incorporated into the control policy.