ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Hyunjae Park, Vijay K. Dhir
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 331-346
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34729
Articles are hosted by Taylor and Francis Online.
Flooding of the reactor vessel cavity is one of many accident management strategies being proposed to manage severe accidents in light water reactors. The effect of external cooling on the thermal behavior of the vessel lower head containing molten core material is numerically investigated using a two-dimensional implicit finite difference scheme. Results are obtained for the vessel shell temperature, pool temperature, and crust thicknesses for both unsteady and steady-state conditions. For both cases, the thermal behavior of the vessel lower head is investigated by parametrically changing the emissivity of the pool surface, the vessel wall, and the upper structure and by changing the temperature of the upper structure. For a certain set of parameters, nucleate boiling on the outer surface of the vessel wall is effective in lowering the temperature of the inner wall of the vessel below the melting temperature of steel. Steady-state results are obtained by using two different heat transfer correlations for the natural convection in the molten pool, which helps in understanding how uncertainties in the modeling of physical processes can influence the evaluation of accident management strategies.