ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ronald W. Goles, Langdon K. Holton, Jr., Gary J. Sevigny
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 310-321
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT92-A34727
Articles are hosted by Taylor and Francis Online.
The Pacific Northwest Laboratory (PNL) has evaluated the waste processing behavior of mercury in simulated defense waste. A series of tests was performed under various operating conditions using an experimental-scale liquid-fed ceramic melter (LFCM). This solidification technology had no detectable capacity for incorporating mercury into its product, borosilicate glass. Essentially all the mercury fed to the melter was lost to the off-gas system as gaseous effluent. An ejector venturi scrubber condensed and collected 97% of the mercury evolved from the melter. Chemically, the condensed mercury effluent was composed almost entirely of chlorides, and except in a low-temperature test, Hg2Cl2 was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg2Cl2 residues was capable of saturating the quenched process exhaust with mercury vapor. The vapor pressure of mercury, however, in the quenched melter exhaust was easily and predictably controlled with the off-gas stream chiller. These tests followed 12 earlier experiments performed at PNL to study the behavior of mercury during vitrification of simulated typical defense waste. The experiments were conducted using an experimental-scale spray calciner/in-can melter (SC/ICM) system plus a very similar off-gas system. Results with both the LFCM and SC/ICM technologies were essentially the same. Just as with the LFCM, the mercury was completely volatilized from the in-can melter system in all experiments. It reacted predominantly with halogens to form a fine particulate solid, most of which was deposited in the off-gas system piping.