ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mohamed S. El-Genk, Huimin Xue
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 271-286
Technical Paper | Fission Reactor | doi.org/10.13182/NT92-A34724
Articles are hosted by Taylor and Francis Online.
The natural-circulation decay heat removal capability of a 550-kW(electric) SP-100 reactor power system for a lunar outpost is investigated. A transient thermal-hydraulic model of the decay heat removal loop (DHRL) is developed to investigate the effects of the radiator surface area, the dimensions and elevation of the decay heat exchanger (DHE), and the diameter of the rise and down pipes on the passive decay heat removal of the system. The effect of gravity is also investigated in order to examine the applicability of earth-based test results to the actual system on the lunar surface. Results show that natural circulation of lithium coolant in the DHRL would keep the SP-100 reactor safely coolable after shutdown. However, the lithium coolant in the adiabatic rise pipe, directly downstream from the reactor core, could overheat by as much as 175 K above its nominal operation value of 1355 K at ∼200 s after shutdown. This coolant temperature increase can be reduced by as much as 50 K by increasing the height of the DHE duct to 15 cm; a further increase in the duct height would have little effect on the decay heat removal. Increasing the elevation of the DHE slightly improves the decay heat removal. Results also show that the maximum coolant temperature in the DHRL and the maximum fuel temperature in the reactor core at 1 g could be as much as 140 and 50 to 100 K lower than their values on the lunar surface, respectively. Conversely, the coolant flow rate could be more than twice that occurring on the lunar surface after reactor shutdown.