ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mohamed S. El-Genk, Huimin Xue
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 271-286
Technical Paper | Fission Reactor | doi.org/10.13182/NT92-A34724
Articles are hosted by Taylor and Francis Online.
The natural-circulation decay heat removal capability of a 550-kW(electric) SP-100 reactor power system for a lunar outpost is investigated. A transient thermal-hydraulic model of the decay heat removal loop (DHRL) is developed to investigate the effects of the radiator surface area, the dimensions and elevation of the decay heat exchanger (DHE), and the diameter of the rise and down pipes on the passive decay heat removal of the system. The effect of gravity is also investigated in order to examine the applicability of earth-based test results to the actual system on the lunar surface. Results show that natural circulation of lithium coolant in the DHRL would keep the SP-100 reactor safely coolable after shutdown. However, the lithium coolant in the adiabatic rise pipe, directly downstream from the reactor core, could overheat by as much as 175 K above its nominal operation value of 1355 K at ∼200 s after shutdown. This coolant temperature increase can be reduced by as much as 50 K by increasing the height of the DHE duct to 15 cm; a further increase in the duct height would have little effect on the decay heat removal. Increasing the elevation of the DHE slightly improves the decay heat removal. Results also show that the maximum coolant temperature in the DHRL and the maximum fuel temperature in the reactor core at 1 g could be as much as 140 and 50 to 100 K lower than their values on the lunar surface, respectively. Conversely, the coolant flow rate could be more than twice that occurring on the lunar surface after reactor shutdown.