ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yoshiyuki Kataoka, Tohru Fukui, Shigeo Hatamiya, Toshitsugu Nakao, Masanori Naitoh, Isao Sumida
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 386-396
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34722
Articles are hosted by Taylor and Francis Online.
To evaluate the heat removal capability of an external water wall-type containment vessel, which is a passive system for containment cooling, thermal-hydraulic behavior in the suppression and outer pools has been examined experimentally. The following results are obtained: 1. A thermal stratification boundary, which separates the pools into an upper high-temperature region and a lower low-temperature region, is observed just below the vent outlet. 2. The natural-convection heat transfer coefficients (HTCs) for the downward and upward flows that appear inside and outside the primary containment vessel wall are measured. These values can be expressed by Nu = 0.13Ra1/3. 3. The condensation HTCs in the presence of non-condensable gas, which affect heat transfer between the wet well and the outer pool, are measured along the long wall. The vertical variations of the condensation HTCs are within 10% of the averaged coefficients, and the averaged coefficients can be expressed by hm = 0.43(ma/ms)-0.8, where hm (kW/m2·K is the condensation HTC and (ma/ms) is the mass ratio of noncon-densable gas and steam. 4. The capability for decay heat removal in the external water wall-type containment vessel for a 600-MW(electric) plant is evaluated based on these results and is found to be large enough.