ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Yoshiyuki Kataoka, Tohru Fukui, Shigeo Hatamiya, Toshitsugu Nakao, Masanori Naitoh, Isao Sumida
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 386-396
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34722
Articles are hosted by Taylor and Francis Online.
To evaluate the heat removal capability of an external water wall-type containment vessel, which is a passive system for containment cooling, thermal-hydraulic behavior in the suppression and outer pools has been examined experimentally. The following results are obtained: 1. A thermal stratification boundary, which separates the pools into an upper high-temperature region and a lower low-temperature region, is observed just below the vent outlet. 2. The natural-convection heat transfer coefficients (HTCs) for the downward and upward flows that appear inside and outside the primary containment vessel wall are measured. These values can be expressed by Nu = 0.13Ra1/3. 3. The condensation HTCs in the presence of non-condensable gas, which affect heat transfer between the wet well and the outer pool, are measured along the long wall. The vertical variations of the condensation HTCs are within 10% of the averaged coefficients, and the averaged coefficients can be expressed by hm = 0.43(ma/ms)-0.8, where hm (kW/m2·K is the condensation HTC and (ma/ms) is the mass ratio of noncon-densable gas and steam. 4. The capability for decay heat removal in the external water wall-type containment vessel for a 600-MW(electric) plant is evaluated based on these results and is found to be large enough.