ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ki-Seob Sim, Ho Chun Suk, Young Ku Yoon
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 351-365
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT92-A34719
Articles are hosted by Taylor and Francis Online.
The KFGR-T computer model has been developed to predict transient fission gas release from UO2fuel with an emphasis on the nonequilibrium behavior of fission gas bubbles. It takes into account the relevant physical processes generally considered by other workers, as well as migration of fission gas bubbles through channels formed by the extension of dislocations to grain boundaries during the transient heatup stage, grain growth/grain-boundary sweeping during the isothermal annealing stage at high temperatures, and gas release through intergranular cracking. This computer model is applied to calculate transient fission gas releases, and the calculated values are compared with the results of out-of-pile experiments performed with UO2 fuel base-irradiated to burnups in the range of 18 to 35 MW·d/kg U. The absolute values and the trends of the fission gas releases calculated with the KFGR-T model are in good agreement with the experimental data. A parametric study is also done to investigate the sensitivity of the model to variables such as initial grain size, heating rate, temperature gradient, and initial gas concentration, and these results are compared with the sensitivity of other models.