ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ki-Seob Sim, Ho Chun Suk, Young Ku Yoon
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 351-365
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT92-A34719
Articles are hosted by Taylor and Francis Online.
The KFGR-T computer model has been developed to predict transient fission gas release from UO2fuel with an emphasis on the nonequilibrium behavior of fission gas bubbles. It takes into account the relevant physical processes generally considered by other workers, as well as migration of fission gas bubbles through channels formed by the extension of dislocations to grain boundaries during the transient heatup stage, grain growth/grain-boundary sweeping during the isothermal annealing stage at high temperatures, and gas release through intergranular cracking. This computer model is applied to calculate transient fission gas releases, and the calculated values are compared with the results of out-of-pile experiments performed with UO2 fuel base-irradiated to burnups in the range of 18 to 35 MW·d/kg U. The absolute values and the trends of the fission gas releases calculated with the KFGR-T model are in good agreement with the experimental data. A parametric study is also done to investigate the sensitivity of the model to variables such as initial grain size, heating rate, temperature gradient, and initial gas concentration, and these results are compared with the sensitivity of other models.