ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Hiroshi Endo, Yoshio Kumaoka, Simcha Golan, Hiroshi Nakagawa
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 318-329
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34716
Articles are hosted by Taylor and Francis Online.
A system dynamics analysis is applied to a pool-type fast breeder reactor to examine the influence of a bottom-supported reactor vessel (BSRV) design on anticipated transient without scram (ATWS) events such as an unprotected loss of flow (ULOF), an unprotected loss of heat sink (ULOHS), and an unprotected transient overpower (UTOP) by using the ARGO safety analysis code. The BSRV enhances negative feedback because of the differential displacement between the core and the control rod as compared with a top-supported reactor vessel. In particular, the BSRV has the potential, especially in a mixed-oxide-fueled core, to mitigate the design requirements to prevent boiling of the coolant during an ULOF and ULOHS through the elongation of the primary flow coastdown and enhancement of the axial expansion of the control rod drive line. In the metallic-fueled core, the effects of the BSRV on the ATWS events are diminished by the limitation of the sodium temperature increase.