ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Günter Fieg, Manfred Möschke, Heinrich Werle
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 309-317
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34715
Articles are hosted by Taylor and Francis Online.
The potential for recriticalities and high energetics during the transition phase of a hypothetical coredisruptive accident in a liquid-metal fast breeder reactor is strongly dependent on the fissile fuel inventory remaining in the core region. To investigate the ability of the fuel to penetrate unblocked flow paths, a series of experiments with pin bundle geometry has been performed at the THEFIS facility using alumina and alumina-iron melts as fuel simulants. Several series of similar experiments were done previously with tubes, annuli, and three-pin bundles using alumina, iron, and mixtures of alumina and iron melts. In this new series, seven-pin bundles with wire wrappers and grid spacers defining the cooling channels between the single pins have been investigated. These bundles are a more realistic representation of the upper blanket structure. These out-of-pile experiments have been analyzed with the PLUGM code, which is based on the assumption of stable crust growth during the penetration and freezing process. The differences in results between out-ofpile experiments using alumina and those using UO2 are discussed, and an explanation for these discrepancies is indicated.