ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Günter Fieg, Manfred Möschke, Heinrich Werle
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 309-317
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34715
Articles are hosted by Taylor and Francis Online.
The potential for recriticalities and high energetics during the transition phase of a hypothetical coredisruptive accident in a liquid-metal fast breeder reactor is strongly dependent on the fissile fuel inventory remaining in the core region. To investigate the ability of the fuel to penetrate unblocked flow paths, a series of experiments with pin bundle geometry has been performed at the THEFIS facility using alumina and alumina-iron melts as fuel simulants. Several series of similar experiments were done previously with tubes, annuli, and three-pin bundles using alumina, iron, and mixtures of alumina and iron melts. In this new series, seven-pin bundles with wire wrappers and grid spacers defining the cooling channels between the single pins have been investigated. These bundles are a more realistic representation of the upper blanket structure. These out-of-pile experiments have been analyzed with the PLUGM code, which is based on the assumption of stable crust growth during the penetration and freezing process. The differences in results between out-ofpile experiments using alumina and those using UO2 are discussed, and an explanation for these discrepancies is indicated.